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ABSTRACT
Let ¢ denote the real function
a2 cos?t
¢(k)=kf —————d!, -—1=5k=1
0 I —k?sin? ¢

and let K§ be the complex Grothendieck constant. It is proved that K§ <
8/m(ky + 1), where k is the (unique) solution to the equation ¢(k) = {z(k + 1)
in the interval [0, 1]. One has 8/m(ky + 1) = 1.40491. The previously known
upper bound is K§ < e'~? = 1.52621 obtained by Pisier in 1976.

§1. Introduction

In [3], Grothendieck proved the following fundamental inequality: Let F be
the real or the complex scalar field. There are universal constants K® and K€
such that for every pair of compact spaces S, T and every bounded bilinear
form V: C(S, F) X C(T, F)— F there exist probability measures x4, v on S and
T respectively, such that

V() =KF |V u(l /1) (g 1)

for all fE€ C(S, F) and all g € C(T", F). The smallest possible values for K® and
K€ are usually denoted K& and K¢ respectively. Grothendieck’s inequality has
important applications in the theory of Banach lattices (cf. (6], {9]) and there
exist natural generalizations of the inequality to C*-algebras (cf. [11], [4]). The
exact values of K} and K¢ are not known, although the hunt for these constants
has been going on for several years. Grothendieck proved that
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/2 < K® < sinh(n/2) =~ 2.301.

In [12], Rietz pushed the upper bound down to 2.261. Finally Krivine proved
by a very elegant method that

V4

— = 1.782
2 log(1 + v/2)

kg

A

(cf. [7]). Moreover he showed that K§ > n/2 (unpublished). A straightforward
generalization of Grothendieck’s proof of K& = n/2 gives K = 4/n. Kaiser
proved by use of Rietz’ method that K& < 1.607 (cf. [5]) and in 1976 Pisier
proved that K§ < e'~7 = 1.526 (y is Euler’s constant). Recently Davie [2] has
proved that K§ > 1.338. (In particular K¢ > 4/7.)
The basic idea in this paper is to generalize Krivine’s method for the proof of
< in(log(1 + \/i))" to the complex case, but in the course of doing this,
one runs into several technical problems, which are not present in the real case:
The starting point of Krivine’s proof is that if (X}, X,) are random variables
that form a two-dimensional (real) joint normal distribution, such that
E(X)=E(X;)=0, E(X})=E(X?) =1, then

2
E(sign X, -sign X,) =~ Arcsin E(X, X,).
n

(The function (2/m) arcsin also plays a key role in Grothendieck’s proof of
K2 =sinh(3n), cf. [3], [8].) We prove that for complex symmetric normal
distributions, the corresponding formula is

/2 cos® ¢t

v1—|k|*sin?¢

where k = E(X,X;) (cf. Lemma 3.2). Now, put

COSt
k)—kf 1=ks=l.
4 l—kzsmt

E(sign X,-sign X;) =k

The function ¢ can be expressed in terms of the complete elliptic integrals E (k)
and K (k) (see, e.g., [1]), namely

(p(k)=i(E(k)—(1—k2)K(k)), —1<k<l, k+#0.
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It is easy to check that ¢(k) is a homeomorphism of [ — 1, 1]onto [ — 1, 1], and
that it can be expressed by the Taylor series

n IN2k3  [(1-3\2Kk% [(1-3-5\2k7
¢(k)=—<k+(— —+{=) T+ =) =+ >
2 2/ 2 \2-4/ 3 \2-4-6/ 4
forall k €[ — 1, 1]. The crucial part in the proof of our new upper bound for K&
is to prove that the Taylor series for the inverse function

o Nu)= i bu"
n=1

nodd

converges to ¢ ~(u) for all u €[ — 1, 1), and that b, <0 for n = 3. This is in
marked contrast to the real case, where the function corresponding to ¢ ~!(u) is
sin(jnu), which has an alternating Taylor series. The first few b,’s are easily
computed:

4 1/4\3 1 /4\7
b=t ne L e be (9
: ’ ’ T 1024\

To prove that b, =0 for n =9, we first observe that ¢ has an analytic
continuation to the disk |z| <1 and that

1
b, =—Res(—1—,0>
n o"

(Res( f, z,) denotes the residue of f at z,EC). Next it is proved that ¢ can be
extended further to a continuous function ¢ * in the upper half plane Im z = 0,
such that ¢* is analytic in the interior. This yields

b, =£Im<f ds ) for n odd,
nn Lot (s)"

where I', is the arc consisting of the line segment [1, @] (@ > 1) and the quarter
circle {ae®® | 0 < § < n/2}. We put a = 5+/2, and prove that for 1 = 9 the main
part of the above counter integral stems from a small interval [1, ,] to the
right of 1, where (p*(s)) ™" has a negative imaginary part. Thus b, <0 for
nz9.

We can now argue almost as in Krivine’s paper [7, pp. 23-25] to see that if
BoE[0, 1] is the number for which
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2 1b, 18 =1

nodd
then K§ = 1/B,(cf. Section 3). Since b, = 4/mand b, = 0 for n = 3, the identity
can also be written
8
;ﬂo -9 (B =1.

Putting k, = ¢ ~'(8,), we get the following equation:

<o<ko)=’—8‘(ko+ 1),

which can be solved numerically by use of tables of elliptic integrals. One has
ko~ 0.81256, from which

1
kSst-—8 <1400
Bo mky+1)

We doubt that the above upper estimate for K§ is an equality. A perhaps more
plausible candidate for K¢ is the slightly smaller number

n2 cos?t

-1 __cos't
e @)l < o /1 +sin’¢

This can be considered as a formed analogue of Krivine’s upper bound
In(log(1 + v/2))~! for KR, because

-1
dt) = 1.40458.

-1 =———lz———=7—[(log(l +V2) L

lz Arcsin(i) -
n 2 Arsinh(1) 2

§2. Power series expansions of ¢ and ¢ !
Let ¢ be the function
273 2
(p(k)=kf 5L, —isk=l
0 1 — k%sin? ¢

It is easily checked that ¢ is a continuous, strictly increasing function and that
p(1)=1, p(— 1)= — 1. Hence ¢ is a homeomorphism of [ — 1, 1] onto itself.
Using the expansion
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o @ 1.3 .00 .2m—1)
1 —k?sin?t)~ 2=
( )= L T

k*™ sin*™ ¢

(lk| =1,0=1t<n/2) and the formula

a2 1e30 eve -2m—1
f cos’tsin®" tdt = z < (2m )>,
0 Am+1)\ 2.4- ... 2m

@ can be expressed by the power series

k)= Y ak", —1=k=1

nodd

where

7 (1.3. .(2m_1)2)2

Opm = .
4m+1) 2:4. ... .2m

The first few terms of the series are

n 1 3 25
k =—(k+—k3+—k5+———k’+ )
Pl =\t T T o

For k€]~ 1, 1], k # 0, ¢(k) can also be expressed in terms of the complete
elliptic integrals

Ew= [T a-ksinora, K@= [T -ksin o,
namely
0= (BK) — (1 = KIK ()
THEOREM 2.1. (1) The inverse function 9" of ¢ can be expressed by an

absolutely convergent power series

o Y(s)= 3 bs", -—1=s=1.

nodd
(2) by=4/mand b, =0 foralln = 3.

REMARK. Since ¢ is a real analytic function, ¢(0) =0 and ¢’(0) # 0, it is
clear that ¢ ~! can be expanded in a power series
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p'(s)= X bys"
ne=]

in some neighbourhood of 0. Moreover b, = 0 for n even, because ¢ ~! is an
odd function of s. By solving the equation

S=E(k+lk3+_3._k5+_2§_k7+ ...)
4 8 64 1024

up to 7th power in s, one finds

4s 1 /4s5\3 1 [ds\7
=2 gl o
P n 8\=m 1024 \n %)

Hence

4 3 1 4\7
b1=—, b3=“l(i) ) b5=03 b7="~<") .
n 8\« 1024 \n

The rest of this section is used to prove that 2, 44| b, | < 0, and that b, < 0 for
n =9, nodd.

Following standard notation of elliptic integrals, we put E’(k) = E(+/1 — k?)
and K'(k) =K(v1-k),0=<k = 1.

LEMMA 2.2, (1) The function p(k), — 1<k =<1 can be extended to a
continuous function ¢ * (k) in the closed upper half plane Im k = 0 such that ¢ *
is analytic in the open half plane Im k > 0.

(2) ForkeR, k=1,

s elL Y ARy
Re ¢ (k)—E(k), Im ¢* (k) K(k) E<k>

Proor. Fork€]-—1, 1],
d kcost
— Arcsin(k sin t) = ————=—.
dt ( ) V1 —k*sin’ ¢t
Thus, by partial integration,

n/2
pk)= f sin ¢ Arcsin(k sin ¢)dt, -1=k=1.
0

The analytic function sin z is a bijection of [ — n/2, n/2] X [0, co[ onto the
upper closed half plane. Let Arcsin* be the inverse of this map. Then Arcsin*
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is analytic in the open half plane Im z > 0, continuous in the closed halif piane,
and for zER,

Arcsint z = Arcsin z, —1=z=1,

Arcsint z =4n + i Arcosh|z|, [|z|>1.

Now, define
n/2
ptk)= f sin ¢t Arcsin* (k sin ¢)dt, Imk=0.
0

Then it is easily checked that ¢ * is a continuous extension of ¢, and that ¢ * is
analytic in the open half plane Im k > 0.
For k > 1 we have by partial integration

sin ¢ = 1/k n/2
Rep*t(k)= f sin ¢ Arcsin(k sin )dt + sin t dn dt
0

sin ¢ = 1/k

sint = 1/k cosz t
[T,
0 V1 —k?sin?¢
and
n/2

Imp*t(k)= f sin ¢ Arcosh(k sin t)dt

sin¢=1/k

/2 cos? ¢t

=k ——
sint=Uk A/ k?sin? ¢t — 1

Substituting sinu = ksin¢ in the integral for Regp*t(k) and sinv =
(1 — k=% ~"2cos t in the integral for Im ¢*(k), one finds

/2
Rept(k)= f V1—=k7*sinudu = E(1/k),
0
sin’ v
v
—(1 — k= %sin?v
=K/1—k)—EX1-k™?.

LEMMA 2.3. (DIme*(k)=Ime*(jk|)for |k|=1,Imk =0.
(2) ¢* has no zeros in the closed half plane Im k = 0 except k = 0.

nl2
Im ¢* (k) = (1 —k*)ﬂ v

PrOOF. (1) The analytic function sin maps the line segment

{t+ia| —nrst=n/2)
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onto the half ellipsoid
{zEC| lz—1]+|z+ 1] =2cosha,Imz = 0}.
Therefore
Im Arcsin*(z) = Arcosh((|z — 1| + |z + 1))

for Im z = 0. Since Arcosh is an increasing function on [1, oo[, we get

Arcosh|z|, |z|Z=1,
Im Arcsin*(z) =
0, lz] <1.

Hence, forImk =0, |k| = 1,

n/2
Ime*(k)= f sin ¢ Im Arcsin*(k sin t)dt
0
n/2
= f sin t Arcosh(| k | sin t)dt
sint=1/|k|
=Img*(lk|).

(2) Since Im Arcsin*(z)>0 for Imz>0, ¢*(k) has strictly positive
imaginary part when Im k > 0.

For k€[ —1,1], ¢ (k)=¢(k) is zero only at k=0, and for k>1 or
k<—1,

n/2
Imo*(k)= f sin ¢ Arcosh( |k |sin ¢)dt > 0.

sint=1/]k|
This proves (2).

LEMMA 24. Leta>1. For n€N, nodd
2 ra
by == [ m(p* (k) ek + (@)
nnJa
where
o
| ra(a)] é;(lm pte) "

ProofF. The Taylor series
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p)= 3 ak"

n=1

nodd
for ¢ defines an analytic function in the complex disk | k| < 1, which coincides
with ¢t (k) for |k| <1, Im k = 0. Since ¢(0) =0 and ¢’(0) = n/4 # 0, there
exists d, € ]0, 1], such that ¢(k) has an analytic inverse in the disk |k | <4d,. Let
C; be the circle with radius J with usual (counter-clockwise) orientation. For
0 < d < dy, (C;) is a simple closed curve with winding number + 1. Hence by
Cauchy’s integral formula

1 9~ '(s) ds

n .
2ni Jocy st

Substituting 5 = p(k) we get

1 k
b,,=—f “kdk.
2niJa (a(k)"“(p( )

Using

_ kp'(k) 1 _ i( k) _
n fq e fc,, ik fq o) k=0

we get

1
by=7—" o(k)™"dk,

2nin J G

i.e., nb, is the residue of ¢ ~” at 0. Since b, ER,

1
b,=——1Im ( o(k) ”"dk)
2nn Cs

1 2 . 4
=—1Im ( f p(de”) "‘5ie“’d0> .
27nn 0

Using that ¢(k) ~" is an odd function for n 0odd, and using that (k) = p(k), one
gets that the imaginary parts of the integrals over the four intervals [0, 7/2],
[7/2, =), [®, 37/2), [37/2, 27] are equal. Thus, if C; denotes the quarter circle

k=2de®, 0=6=n/2,

then
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2 —n
b, —n—nlm(faq;(k) dk).

Since ¢(k) coincides with ¢ * (k) on Cjand since ¢ *(k) has no zeros in the set
(zEC|d =< |z|Sa,0=<argz <7/2}

(cf. Lemma 2.3(2)), we get by Cauchy’s integral formula that

a i6
b, = 2 Im (f ot (k) "dk + f ¢ * (k) "dk +f (p*(k)"”dk)
nn 4 Ca i

i

where the last integral is taken along the imaginary axis. Moreover, since ¢ * (k)
is real on [, 1] and purey imaginary on the imaginary axis,

Im(Ll¢+(k)‘"dk>=O
Im(£f¢+(k)‘"dk)=0.

and

Hence
2 (e _ 2 _
b,,=-—f Im ¢ * (k) "a’k+—lm<f (k) "dk).
nJi n (o2
By Lemma 2.3, [¢*(k)| ZIm ¢ * (k)= Im ¢*(|k|). Thus
[ orto-ak| <% amp @)
c

This completes the proof of Lemma 2.4.

LemMMA 2.5. Let p(k)=Reg*(k), p(k)=Imo*(k), and ¢{=dp /dk,
95 =dp,/dk for k > 1. Then:

(1) pu(k)pitk) — i(k)p(k) = m/2k, k> 1.

(2) Let ¢ = (4/m)E(1V/2)K(1/v/2) — E(1//2)) = 0.86575, then

0(k)pi(k) + gl )piik) = i g, k>1

and equality holds for k = v/2.
Proor. (1) By Lemma 2.2,
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1 AN (L
por=af}) wa sir=s -5 ).

Using

g15——1(1< E) ang TK-E)__K
dk dk 1—k?

(cf. [1, Formula 710.02 and 710.05]) one gets
1 1 1
ky==(K{=)—E{-)]},
o= (<)== ()

1 1
o= ()

Thus (1) follows from Legendre’s relation EK’'+ E'K — KK’ =n/2 (cf. [,
Formula 110.10]).
(2) We have

k(p\(K)oi(k) + po(k)pi(k)) = (E(K — E) + E"(K" — E')(1/k).

In particular

V2001 + 009D = 2E (%) (x (i) —E (%)) -2

It remains to be proved that
(E(K —E) + E((K’ — E"k) = (E(K — E) + E(K’' — E"))(1/1/2)
for 0 <k < 1. Since the function
fim)=(E(K — E)— ENK' — E)vm), 0<m<]

is symmetric around m = 4, it is sufficient to prove that fis convex. Using the
above-mentioned formulas for dE/dk and d(K — E)/dk one gets

E K —
_E(f)(,( E)m) = ((f m) ( E)(\/ri))z

m

=)
Since E'(vm)K’ — E'Yv/m) = E(v/1 — m}K — E)v/1 — m) also
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2
d—2 E'(v/m)K - E')(~/m)20.
dm

This proves that fis convex.
LEMMA 2.6, Z,00lb.) <o and ¢ (s) =2, 040 bus" for s€[ — 1, 1].

Proor. By Lemma 2.5

d i
10 = 2py0i + 9up2)(k) 2 f .

Fixa>1,thenfor 1 £k Zq,

2> 2 kn_q
1K) 2 | p(1)] *f. L d

“1+8 % -1,
44

Thus forn = 3

flalfﬂ(kﬂ_"dké La(l +ig(k _ 1)>—n/2 "

0 -n/2
§f (1+H(k~1)> dk
1 (44

a 2

nqn—2'

Hence, by Lemma 2.4,

1b.] =

=m+%(lm¢+(a»_", nz3.

If, for instance, we put a = 5\/2_, then by [1, p. 324]
Im ¢*(a) = K'(+/0.02) — E’(+~/0.02) = 2.32555.

Thus the sequence n?|b, | is bounded. In particular Z, 44| b, | < co. Therefore
Z 1 oad Dns" converges to a continuous function on [ — 1, 1], which is real analytic
in the interior of the interval. Since this function coincides with ¢ ~!(s) in some
neighbourhood of 0 and since ¢ ~'(s) is also real analytic on ] — 1, 1[, we have
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p'(s)= X bs", SE[-11]
nodd

LEMMA 2.7. Let 6(k)=arg(p*(k)), k = 1. Then 0(k) is a strictly increas-
ing function of k, 8(1) = 0 and lim, . , 6(k) = =n/2.

ProoF. Using

pAk)
8(k) = arctan ——=
(k) = arctan o)
we have by Lemma 2.5 (1)
dotk) _ puk)estk) —oiklontk) __ m
dk lp*(k)|? 2k|p* (k)1

for k > 1. Thus 6(k) is strictly increasing for k = 1. Fork = 1, 8(k) = Arg(1) =
0. Using that

EQ)y=nr/2, E(1)=1, LinllK(k)=+oo
we have by Lemma 2.2
. n .
lim ¢,(k)== and lim py(k)= co.
k—w 2 k—c0

Thus 8(k)— n/2 for k —~ co.
LEMMA 2.8. Put a=5v2 and 6, = 6(e). For fixed nEN let p =[ny/n]
( = integer part of nfyr), and put
2 B(k)=(n/n)r

I =— lot(k)|™"|sin nf(k)|dk
n J eky=(nin}r—1)

forr=1,..., p. Moreover, put
2 (%
I'=— l@*(k)|~"|sin no(k)|dk.
nn < (z/n)p
Then:
(1) @/nn) ffIm(p*(k) "ak =—1,+ L~ -+« + (= 1)?L, +(—1)*'I".

(2) Fornz9%9onehaspz2and ,>5L>-.->1,>1I.

ProoF. (1) It is clear that
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2 [ 3 2 a
=~ | Im(p () ")k = ~— [ 10+ w17 sineaoihyak

=L+ L= (= 1P+ (= P,

(2) Let k = x(8), €0, n/2[ be the inverse function of § = (k). Then by
the formula for d6(k)/dk derived in the proof of Lemma 2.7 we have

4 (n/n)r .
== x(0)o*(x(6))*~" |sin nf|d6
TN J (ain)r—1)
and
4 4
I'=s— x(@) 19t (x(8))F~"|sin nb | db.
n2n J@mp

We prove next that k|¢*(k)|>~" is a strictly decreasing function on [1, ] for
nz9:

d 2—n d
—_— k + 2—-ny — + 2-n - + -n___ + 2
dk( lp* ()1~ = o™ (k) +k< > )I(p (k)| de¢ (k)|
= ot (k) 7" (lo* (k) * — (n — 2)k(p\(k)pi(k) + py(k)pi(k))
+ —-n + 2 __ — E
= et (k)| (l(o k)P —(n 2)2q)

7
= |¢+(k)|-"(|:p+(a)12——72“1>.

Here we have used Lemma 2.5(2), and that |¢ *(k)|? is an increasing function
of k (which also follows from Lemma 2.5(2)). From [, p. 324],
0.(@) = 0,(5v/2) = E(+/0.02) = 1.56291,
@) = K'(+/0.02) = E’(+/0.02) = 2.32555.

Hence | ¢ * () |* = 7.8509 while 7rq/2 = 9.5194. Thus k | ¢ * (k) |>~" is a strictly
decreasing function of kK for 1 Sk <aandn = 9.
Using |sin né| is periodic with period n/n, it now follows that

L>0L>--->1,.

Moreover,
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4 (o ,
r== [ x(®)19*(x@) P "Isin no1d8
n°n Jnpin

4 8,—nin .
=— 20 9*(x(6)) " |sin nf|d6
n2n J @mye -1
<lI,.
Finally,
6, = arctan 2:C) = arctan(l) = n/4.
¢(@)
Thus

P=[£%:|§[2-0—0]§2 fornz9.
4 i1

This completes the proof of Lemma 2.8.
LEMMA 2.9. Letn=9,let1 be asin Lemma 2.8, and let
¢ =|p*(v/2)| e~ VD= 1.05838.

Then
(1) 1, >(0.27/nHc ",
(2) ,<0.35-1,.

Proor. Since y(6)=1 for 0 = § <n/2, we have
4 nin
Lz— f 0™ (2(0)) 2" |sin 8 df.
ninJo
For 6 = 0(k) (equivalently k = y(8)) we have

d d do\ !
2 1oglo*(x(6) =—log|¢*(k)|’-(—)

do dk dk
p(K)pi(k) + p(k)pik) 2
—_ '_kl +(k 2
10t ()P 219 ©)
2gq

where ¢ = 0.86575 is the constant defined in Lemma 2.5. Hence for0 =6 =

0(v2),
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log|¢* (x(9))] <loglg*(v/2)| — (6(v2) — )q.

Equivalently
ot (2(0)] Zce®, 0=6=6(/2)
where
c= |¢+(\/§)|e—qo(~/i>.
From [1, p. 324},
0.(v2) = E(1/v/2) = 1.35064,
0:(v'2) = K(1/v/2) — E(1/7/2) = 0.50343.
Thus
l9*(v/2)| = 1.44142,
8(v/2) = arctan(p,(v'2)/9,(v/2)) = 0.35678
and
¢ ~1.05838.
Since 6(+/2) > n (= 0.34907), we have for n = 9

4 nin
Lz— | (ce®)*"sinnd do
n‘nJo

4ct~" )
=— zf e (n—2a0/ngin 6 de
nn? Jo

4c2"
n*n?

=

fﬂ e %sin 0dO
0

(2c>21+e"”‘ _
=|— c
n/ 1+ ¢?

Since

2 —qn
(35> Lt e 027659
n/ 1+¢4°

we have proved (1).

Isr. J. Math.



Vol. 60, 1987 COMPLEX GROTHENDIECK CONSTANT 215

Using
0.(5/V/3) = E(v/0.12) = 1.52256,
0:(5/v/3) = K'(/0.12) — E'(+/0.12) ~ 1.37189,
we have
0(5/v/3) = 0.73339.
Hence

8(5/v/3) > % (=~0.69813).

Thus for 0 <0 = 2xn/9, x(8) = 5/+/3. Hence for n = 9

I 4 5 2a/n
é —_— e
2 7[2n \/i nin

4 5 ain

_nzn\/i 0

l*(x(8))|*~"|sin n@ | db

o (elo)

2—

" sin n6 de.

Since
—d-logIW(x(G))l 24q,
do o

it follows that

l9*(X(0 +n/n))P~" = e~ "= Duln o+ (x(0)) ",

Thus
Izsi_s_e—(n-z)nq/nf"/”|¢+(x(0))|2"‘sin n6 do
T nn3 0
é%e—"ﬂq.@_ll.
But

5
_\/_—3 e~ ™" =~ (.34809.

This proves (2).
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END OF PROOF OF THEOREM 2.1. Letn = 9andletl, l,,...,I,,I’beasin
Lemma 2.8. By Lemma 2.4 with o = 5v/2 and Lemma 2.8, we get
—by=( =L+ -+ (=1L + (= 1)I) = r,(5v/2).

Since the terms in the alternating series have decreasing size by Lemma 2.8(2),
and since p = 2, one has

—b,>1,— I, — r,(5/2).

Lemma 2.9 gives
1
(I, — I)>0.27(1 - 0.35) = (1.06) ™"
n

7
>221.06)

Since Im (0*(5\/5) = 2.32555, we get by Lemma 2.4

(V)] <5—‘£(z 32)7.

Thus
5> om-n-s_f_(z -
A7 2 1. n
9 51.06)-~<1—5‘/"<—O6->>
n 0.175 \2.32
0.175

> =12 (106) (1 = 41n-277),

Since n-27" is a decreasing function of n EN, and since 41-9.2°°< 1, we
conclude that b, <0 for all odd n = 9. This completes the proof of Theorem
2.1.

REMARK. In the beginning of this section we found b, b;, bs and b, by
solving the equation ¢(k)=ys in terms of power series. Continuing this
procedure, one gets

4 9 4\ 11 4 13
b9='—5'2_14<—), b“=_15'2_l7(_> N b13=—49'2_20<_>
T ' /(9
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We doubt that it is possible to write the b,’s in a closed form. However, using
the following asymptotic expressions for ¢,(k) and g,(k) for k — 1 (k = 1):

(k) =1 — 3k — Dlog(k — 1) + Ok — 1),
¢2(k)=g(k— 1)+ 0(1),

it is not hard to prove that I,/I, —0 and that I, ~ 4/(n*log? n) for n — o, so
that

by ~ —

forn—oc (nodd).
n?log? n
§3. The main result

THEOREM 2.1. Let K§ denote the complex Grothendieck constant and let ¢
be as in Section 2. Then

K§s—3
(ko + 1)

where kg is the unique solution to the equation (k) = {n(k + 1) in the interval
[0, 1]. One has 8/m(ky+ 1) = 1.40491.

LEMMA 3.2. LetdE€ENandlet Z,, ..., Z, be independent complex random
variables, equally distributed with density

1 2
—e *dxdy (x=Rez,y=Imz).
n

For each u = (u,, ..., u)€C?, let
d
Z,= Y wZ

k=1

and let (u,v)=2Z2¢_, wyv, be the usual inner product in C*. If u,vEC? and
Nullo=|vil.=1, then

cos*?

-_— n/2
E(sign Z,sign Z,)={u,v f dt
(sig & )=y o 1—|(u,v)|*sin?t

PrOOF. The sign of a complex number z is
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z/z{, z#0,
sign z =

0, z=0.

It is elementary to check that for any z €C,
. 1 &, ) ‘
(%) sign z = 2 f sign(Re(e ~z))e*ds.
0

Put X, = V2 Re(Z,) and X, = V2Im(Z),k=1,...,d. Then (X)), isa
set of independent real valued random variables each normally distributed
with E(X;)= 0 and E(X?) = 1. For a ER*, put

2d
Xa = 2 aiX,'.
=1

j=

Fora,b€R¥, |al|,= || b |.=1, (X,, X,) form a joint normal distribution,
E(X,)=E(X,)=0, EX?)=E(X?)=1 and E(X,X;)=(a, b). Thus by [7,
proof of lemma 1].

2
E(sign X, sign X,) = — Arcsin{a, b).
n

For u, veC?,
Re Z ! X,, ReZ L X
= = s €L, =—¢x
N V2!
where ay_,=Rew, ay = —Imuyy, by_,=Rev, and ay, = —1Imy,, k=
1,...,d. Hence

2
E(sign(Re Z,)sign(Re Z,)) = — Arcsin{a, b)
m

2
= — Arcsin Re(u, v),
n

so by formula (x)

Arcsin Re{e ~%u, e v )e'®=*dbdyp.

— 1 b3 2n 2
E(sign Z,sign Z,) = — f f -
16 Jo Jo =&

Assume now that {u, v) ER. Then the integral is equal to
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2n 2r
—l—f f arcsin(cos(f — ¢){u, v))e‘®~?dbdy
8§nJo Jo

1 2 . )
=— Arcsin(cos 7 {u, v))e'dt.
0

Since Arcsin(cos f{u, v)) is an even function of period 2x, the imaginary part
of the integral vanishes. Thus

P23

_— 1
E(sign Z,sign Z,) = Z Arcsin(cos f{u, v))cos t dt.
0

The integral is the sum of four integrals, namely the integrals over [0, n/2],
[=/2, ], [r, 37/2] and [37/2, 2], and these integrals are equal. By substitut-
ing ¢ with /2 — ¢ in the integral from 0 to n/2 we thus have

—_ n/2
E(sign Z,sign Z,) = f Arcsin({u, v)sin t)sin ¢ dt.
0
Finally, using

4 Arcsin(x) = (1 — x?) 172,
dx

one gets by partial integration

cos? ¢

[ n/2
E(sign Z,sign Z,) = (u, v f
(sig gnZ,)={u,v) o V1 —(u,v)*sin’¢

If(u,v)y¢R,wecanchoosec€C, |c| = 1,suchthatc{u, v) = |{u, v)]. Since
(cu, v) €R and since sign Z, = ¢ -sign Z,, we have

E(sign Z, sign Z,) = cE(sign Z_, sign Z,)

cos? ¢t

n/2
=¢|(u,v f dt
wnll, V1= [{u,v)*sin®t

cos®¢

n/2
=(u,v dt
< >fo V1 = |{u, v)*sint

This completes the proof of Lemma 3.2.

The following definition can essentially be found in Krivine’s paper [7, pp.
23-24], but we will phrase it differently, so that we can take Lindenstrauss’ and
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Pelczynski’s matrix formulation of Grothendieck’s inequality [8] as starting
point.

On the set of complex n X n matrices M,(C) we consider two norms || | ¢
and || ||, defined by:

.....

(A is in the closed convex hull of the

matrices of the form (x;, y,), where
[Alle=1e s _
Xis v o5 Xns Yis - - - » Vy ar€ VECtors in the

{unit ball of some complex Hilbert space.

Itisclearthat | 4 ||, = || 4 ]| o- A straightforward dualization of [8, Theorem
2.1] gives

LEMMA 3.3. For every n €N and every A € M,(C),
[Alle =K§ | 4 |l

Moreover, K§ is the smallest constant for which this inequality holds for all
n€N and all A€M, (C).

LEMMA 3.4. (1) Let AEM,(C). Then | A ||, =1 if and only if there exist
URiL VeCIOrS Xy, . . ., Xn, V1, + - - » Vu i1 @ Hilbert space X, such that

A,-j=(x,~,yj), i,j=l,...,n.
(2) Let A o B denote the Schur product of A, BE€M,(C):
(4 °B); = A;By, i,j=1,...,n.
Then | =B 4= | 411,411 B |+

PrROOF. Let 9, be the set of n X n matrices of the form (x;, y;)/;.;, where
X;, y; are unit vectors in some Hilbert space . Since the unit ball of a Hilbert
space is the convex hull of the unit sphere, we have

|44 =1=4&conv(2,).

In the definition of 92, we can put J# = C?", because Xx,,..., Xy Vis -+ +» Va
span a subspace of # of dimension at most 2z#. This shows that 2, is a
compact subset of M, (C), and therefore

conv(2,) = conv(2,).
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Next, let 4, BEZ, and A €[0, 1]. Choose Hilbert spaces #, o and unit
vectors x;, y; €, z;, w;EX, such that

Aij = (xi’ yj)a Bij = (Zn Wj)'
Then
(1 — A, + AB; = ((1 — A)¥2x; ® 12z, (1 — 1)y, © A7w)

where the last inner product is taken in J# © &". Thus (1 —1)4 + ABE 2,
Hence conv(2,) = 92,. This proves (1). To prove (2) it is sufficient to show
that |4 B ||, =1 whenever |4 ||,=1and || B ||, =1. By (1) we have

Az’j = (x:'a y])) ij = (Z,-, wj)

where x;, y; € Unitsphere(#), z,, w; € Unitsphere(x") for a pair of Hilbert
space # and . Hence

AljBij = (xi ® Zi ) ® wj)

and || x;®z || = || ¥; ®w; | =1 where norms and scalar products are com-
puted in the Hilbert tensorproduct # ® A" Hence |4 °B |, =1.

LEMMA 3.5. (1) The function
72 2
cos’t _—
V1= |k|*sin¢

is a homeomorphism of the closed unit disc D = {z€C | |z} =1} onto itself.
(2) Let AEM,(C). Then

d(k)=k

A S1= | @A) |e =1
where ®(A4) is the matrix with elements ®(4); = D(4;).
ProoF. Let ¢ be as in Section 2. Then
|D(k)| = o(lk]),
argd(k)=argk, k+0

so (1) follows from the fact that ¢ is a homeomorphism of [0, 1] onto itself and
9(0)=0.If4EM,(C)and || 4 || =1, there exist by Lemma 3.4 (2) a Hilbert
space # and unit vectors ¥, ..., U,, v, ..., v, EH, such that

Ay = (u;, v;).
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Since span{u,, ..., U,, V;, ..., V,} is finite dimensional, we can assume that
# = C for some dEN. Let Z,, ..., Z, be complex random variables on a
probability space (Q, dw) satisfying the conditions of Lemma 3.1, and put

d
Zu= 2 uka, uec.

k=1

By Lemma 3.1,

O((u;, v;)) = fn sign Z, (w)sign Z, (w) dw.
Hence, by the definition of | | ¢, we have

I Dus, vi))ia o S 1.

ProOOF OF THEOREM 3.1. Let ®~': D — D be the inverse function of ® (cf.
Lemma 3.5). Since ®(k) = sign(k)p(| k|), we have

@~ '(s) = sign(s)p (|5 1).
Thus, by Theorem 2.1,

d~'(s) = sign(s) § b,ls|"
!

where b, =d/m and Z,,4)b, | < 0. Since

5= X |bals"

nodd

is a strictly increasing continuous function on [0, 1] and since Z,04410,| =
4/m > 1, there is a unique $,€10, 1[ for which

Z 'bn|B0= .

nodd

Next, we show that KG = 1/8,: Let A € M,(C), and assume that || 4 ||, = 1.
Fors€D,

DO (Bes) = ¥ by 3! sign(s)|s|*+!
k=0

[+¢]
- I+ 1ok +1gk
= 3 by BEFTIsETIsE
k=0
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Since (M,(C),0) is a Banach algebra with norm | ||, and since clearly
| € e = || C |4 for all CEM,(C), we have

[ P~ '(Bod) [« = Z (Do 1B =

where ®~'(8,4) denotes the matrix with elements ®~'(84;), i,j=1,...,n.
Hence by Lemma 3.5

1Bed e = [ RP'(Bd) 6 =1
Thus we have proved that for any n X n matrix
(Alle=1=[41]e=1/ps,

s0, by Lemma 3.3, K§ < 1/8,. To compute f,, we use that b, =4/mand b, <0
for n = 3 (cf. Theorem 2.1). This gives

Y b, lﬁo"‘ﬂo 9~ (Bo).

nodd

Hence f, is a solution to the equation
8
9~ (Bo)==Po— 1.
n
Now, put ky= ¢~ '(8,). Then k,€[0, 1] and
m
p(ko) = o = '8' (ko + 1).

From the Taylor expansion of ¢(k) it follows that ¢’(k) = n/4for0 =k < 1, s0
that

p(k) — in(k + 1)

is an increasing function on [0, 1]. Therefore X, is the unique solution to the
equation

w(k)=’§‘(k+1)

in the interval [0, 1]. Recall from Section 2 that
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o(k) = i (E(k)— (1 —k)K(k)), O<k<l.

By second-order interpolation in the tables [1, p. 324] one finds

k? E(k) K(k) (k) pk) — gk + 1)
0.6601 1.264955 2.020408 0.711684 —0.000070
0.6602 1.264898 2.020537 0.711754 — 0.000023
0.6603 1.264841 2.020666 0.711825 +0.000023
0.6604 1.264784 2.020795 0.711895 + 0.000069

(slight adjustments in the last decimal place have been carried out by use of
more accurate tables [10]). Hence

ko=~ (0.66025)"*~ 0.81256

which gives

1 8
SE—=——=1.40491.
fo mlkyt+1)
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