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ABSTRACT 

Let ~ denote the real function 

f a/2 cos 2 t 
~o(k) = k dt, - 1 ~ k < 1 

J0 x / l - k  2sin 2t 

and let K c be the complex Grothendieck constant. It is proved that K c 
8/n(ko + 1), where ko is the (unique) solution to the equation ~0(k) = ~n(k + 1) 
in the interval [0, 1]. One has 8/n(k0 + 1)~ 1.40491. The previously known 
upper bound is K c < e ~-r ~ 1.52621 obtained by Pisier in 1976. 

§1. Introduction 

In [ 3], Grothendieck proved the following fundamental  inequality: Let F be 

the real or the complex scalar field. There are universal constants K R and K c 

such that for every pair of  compact  spaces S, T and every bounded bilinear 

form V: C ( S ,  F )  X C ( T ,  F )  ~ F there exist probability measures #,  v on S and 

T respectively, such that 

[ V(f,  g)l < KF ][ V [[ u ( l f l 2 ) ' / 2 v ( [ g  [2)1/z 

for a l l f E  C ( S ,  F )  and all g E C ( T ,  F) .  The smallest possible values for K R and 

K c are usually denoted Kg and K c respectively. Grothendieck's  inequality has 

important  applications in the theory of  Banach lattices (of. [6], [9]) and there 

exist natural generalizations o f  the inequality to C*- algebras (cf. [11], [4]). The 

exact values of  Kg and K c are not known, although the hunt  for these constants 

has been going on for several years. Grothendieck proved that  

Received November 9, 1986 

199 



200 u.  HAAGERUP Isr. J. Math. 

n/2 < K] < sinh(n/2) ~. 2.301. 

In [ 12], Rietz pushed the upper bound down to 2.261. Finally Krivine proved 
by a very elegant method that 

It 
K~ = < ---~ 1 .782 

2 log(1 + v'~) 

(cf. [7]). Moreover he showed that K~ > n/2 (unpublished). A straightforward 
generalization of Grothendieck's proof of K~ > n/2 gives K c > 4/n. Kaiser 
proved by use of Rietz' method that K c < 1.607 (cf. [5]) and in 1976 Pisier 
proved that K c =<_ e I -z ~ 1.526 (7 is Euler's constant). Recently Davie [2] has 
proved that K c > 1.338. (In particular K c > 4/n.) 

The basic idea in this paper is to generalize Krivine's method for the proof  of 

Kg < ½n(log(1 + v/2)) -1 to the complex case, but in the course of doing this, 
one runs into several technical problems, which are not present in the real case: 

The starting point of Krivine's proof  is that if (X~, AVE) are random variables 
that form a two-dimensional  ( rea l ) jo in t  normal distribution, such that 
E(X~) = E(X2) = O, E(X~) = E ( X  2) = 1, then 

E(sign X~. sign X2) = 2 Arcsin E(X~X2). 
7t 

(The function (Eht) arcsin also plays a key role in Grothendieck's proof  of 
K~ _-< sinh(½n), cf. [3], [8].) We prove that for complex symmetric normal 
distributions, the corresponding formula is 

f o  ~/2 COS 2 l 
E ( s i g n X ~ . s i g n X 2 ) = k  x / 1 -  Ikl~ sine t dt 

where k = E(XI-(E) (cf. Lemma 3.2). Now, put 

fo 
/2 cos 2 t 

q~(k) = k v / l  - k 2 sin E t '  
- l < k < l .  

The function ~a can be expressed in terms of the complete elliptic integrals E ( k )  

and K(k)  (see, e.g., [1]), namely 

1 
~o(k) = 7 (E(k)  - (1 - kE)K(k)), 

K 
- l < k < l ,  k ÷ O .  



Vol. 60, 1987 COMPLEX GROTHENDIECK CONSTANT 201 

It is easy to check that ~0(k) is a homeomorphism of[ - l, 1] onto [ - l, 1], and 

that it can be expressed by the Taylor series 

rt k3 + (1. 3]2 kS + (l  . 3. 5]z k 7 

3 4 + )  
for all k ~ [ - 1, 1 ]. The crucial part in the proof of our new upper bound for K~G 

is to prove that the Taylor series for the inverse function 

~0-1(u) = ~ b,u" 
n - 1  
nodd 

converges to ~o-~(u) for all u ~ [  - 1, 1], and that b. < 0 for n => 3. This is in 

marked contrast to the real case, where the function corresponding to ~0 -~(u) is 

sin(½nu), which has an alternating Taylor series. The first few b.'s are easily 

computed: 

- -  b s = 0 ,  b 7 - - - ~  . 
1024 

To prove that b, _-_ 0 for n >_-9, we first observe that ~ has an analytic 

continuation to the disk I z I < 1 and that 

(Res(f, Zo) denotes the residue of  f a t  zo~C). Next it is proved that ~ can be 
extended further to a continuous function ~0 ÷ in the upper half plane Im z > O, 
such that ~o + is analytic in the interior. This yields 

z~n 

where U~ is the arc consisting of  the line segment [ 1, a] (a > 1) and the quarter 

circle {ae ~° [ 0 =< 0 =< g/2}. We put a = 5x/'2, and prove that for n >_- 9 the main 

part of  the above counter integral stems from a small interval [ l, a,  ] to the 

right of  l, where (~+(s)) -" has a negative imaginary part. Thus b~ < 0 for 

n>__9. 

We can now argue almost as in Krivine's paper [7, pp. 23-25] to see that if 

floE[0, 1] is the number for which 
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n odd 

then K c < l/flo (cf. Section 3). Since b~ = 4/n and b, < 0 for n > 3, the identi ty 
can also be writ ten 

8 
-13o - ~o- t(flo) = 1. 
7~ 

Put t ing ko = ~0-~(fl0), we get the following equat ion:  

~ ( ~ )  = 8 (ko + 1), 

which can be solved numerical ly by use of  tables of  elliptic integrals. One has 
k0 ~ 0.81256, f rom which 

1 8 
K c_-< - ,~1.40491.  

Bo n ( k o +  1) 

We doubt  that  the above upper  est imate for Ka c is an equality. A perhaps more  
plausible candidate  for K c is the slightly smaller n u m b e r  

( f o  ~n cos 2 t ) - [~o(i)l - l  = dt  ,~ 1.40458. 
v / l  + sin 2 t 

This  can be considered as a fo rmed  analogue of Krivine 's  upper  bound  
in(log(1 + v/2)) -  1 for K] ,  because 

~ Arcsin(i) -~ rt _~ x/r~))_ ~. (log(l + 
2 Arsinh(1) 2 

§2. Power series expansions of q~ and ~ -  t 

Let ~0 be the funct ion 

f n/2 COS 2 l 
~o(k) = k dr,  - 1 < k < 1. 

Jo  ~ / l - k  2sin 2t 

It is easily checked that  ~0 is a cont inuous ,  strictly increasing funct ion and that  
~o(1) = 1, ~0( - 1) = - 1. Hence ~0 is a h o m e o m o r p h i s m  o f [  - 1, 1] onto  itself. 
Using the expansion 
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co 1 • 3 (2m 1) (1 - k 2 sin 2 t) -u2 = ~ k TM sin TM t 
, .-o 2 .4  . . . . .  2m 

(I k I --< 1, 0 < t < 7t/2) and the formula 

£ / 2  7t ( . I .3  . . . . .  (2m - 1)) 
c ° s 2 t s i n 2 m t d t = a ( m + l )  - 2 ~ 4 ~ S ~ m  ' 

Ca can be expressed by the power series 

~a(k)= Y~ a.k n, 
n odd 

where 

a2m+l ~--- 

- 1 N k N 1  

7r (1 .3  . . . . .  (2m - 
4(m + 1) 2 - ~ .  - .  - --2m 1)2) 2. 

The first few terms of  the series are 

~ ° ( k ' = 4 ( k + l k 3 + 3 k S + 8  64 102425 k 7 + .  . . ) .  

For k E ]  - 1, 1[, k ÷ 0, ~0(k) can also be expressed in terms of  the complete 
elliptic integrals 

; o  r~/2 E(k) = (1 - k 2 sin 2 t)mdt, 

namely 

THEOREM 2.1. 
absolutely convergent power series 

~0-1(s) = 2 b,s", 
n o d d  

f n/2 K(k) = (1 - k 2 sin 2 t)-'/2dt, 
d O  

1 
~a(k ) = ~ (E(k ) - (1 - k2)K(k )). 

(1) The inverse function ~a -I of  ~a can be expressed by an 

(2) b~ = 4/7t and b, < 0 for all n >= 3. 

- l _ < s < l .  

REMARK. Since ~o is a real analytic function, ~(0) = 0 and ~'(0) 4= O, it is 
clear that ~ -  ~ can be expanded in a power series 
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tp-~(s) = ~ b,s ~ 
n--I 

in some neighbourhood of  0. Moreover  b, = 0 for n even, because ~a- ~ is an 

odd  function of  s. By solving the equat ion 

n (k + l  k3 + 3  kS + 25 k7  + . . . )  
S = 4 8 64 1024 

up to 7th power  in s, one finds 

. . . . . .  + O(sg). 
n 8 1024 

Hence  

rt ~ , b s = 0 ,  b7 • 
' 1024 

The rest o f  this section is used to prove that Y,, odd I b, I < ~ ,  and that bn < 0 for 

n > 9, n odd. 

Following standard notation of  elliptic integrals, we put  E'(k) = E(x/1  - k 2) 

and K'(k) = K(x / l  - k2), 0 < k < 1. 

LEMMA 2.2. (1) The function ~(k), - 1 _-< k _-< 1 can be extended to a 
continuous function ~ + ( k ) in the closed upper half plane Im k > 0 such that ~ + 
is analytic in the open half plane Im k > 0. 

(2) F orkER ,  k > l, 

Re tP+(k) = E ( ~ )  , I m t p + ( k ) = K ' ( 1 ) - E ' ( ~ ) .  

PROOF. For  k E ] - 1, 1 [, 

d k cos t 
- -  Arcsin(k sin t) = 
dt x/1 - k 2 sin 2 t" 

Thus, by partial integration, 

f 
~t/2 

~(k) -- sin t Arcsin(k sin t)dt, - 1 < k <-_ 1. 
,./o 

The analytic function sin z is a bijection of  [ - n/2, n/2] X [0, ~ [  onto the 

upper  closed half  plane. Let Arcsin + be the inverse o f  this map. Then Arcsin + 
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is analytic in the open hal f  plane Im z > 0, cont inuous  in the closed hal f  plane, 

and for z E R, 

Arcsin ÷ z -- Arcsin z, - l < z < l  

Arcsin + z = ½rt + i Arcosh [ z 1, I z [ > 1. 

Now, define 

f 
~t/2 

~o + (k) = sin t Arcsin + (k sin t)dt,  I m k  > 0. 
,3O 

Then  it is easily checked that  ~o + is a cont inuous extension o f  ~0, and that  ~o + is 

analytic in the open half  plane Im k > 0. 

For  k > 1 we have by partial integration 

oSin t - l/k f lt/2 
Re ~0 +(k) = sin t Arcsin(k sin t)dt + sin t ½7t dt 

J sin t - Ilk 

f0 
sin t - l/k COS 2 t 

= k x/1 - k 2 sin 2 t 
dt 

and 

f n/2 
Im ~+(k)  = sin t Arcosh(k sin t)dt 

J sin t -- Ilk 

f .n  cos z t 
= k .  dt. 

,d sin t - l/k ~ / k  2 sin 2 t -- 1 

Substituting sin u = k s i n t  in the integral for  Re(o+(k)  and 

(1 - k-2)  -~n cos t in the integral for  Im ~,+(k), one finds 

f Jtl2 
Re ~+(k)  = x / l  - k -2 sin 2 u du = E ( l / k ) ,  

,dO 

f o  ~/2 sin 2 v 
Im ¢ + ( k )  = (1 - k - 2 )  x / 1  - (1 - k - 2 ) s i n e  v dv 

---- K(x/1  - k -2) - E(x /1  - k-2).  

L~MMA 2.3. (1)Im~o+(k)>=Xm~o+(IkJ) for  lk l  > l , I m k  >O. 

(2) ~o + has no zeros in the closed hal f  plane Im k > 0 except k = O. 

sin v -- 

PROOF. (1) The  analytic funct ion sin maps  the line segment 

{t + ia I - 7r/2 < t < 7t/2) 
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onto the half  ellipsoid 

{ z ~ C I  I z -  II + Iz + II = 2 c o s h a ,  Imz>-O}.  

Therefore  

Im Arcsin+(z) = Arcosh(½(lz - I I + Iz + 1 I)) 

for Im z > 0. Since Arcosh is an increasing funct ion on [I, ~ [, we get 

[ A r c o s h l z l ,  I zl  > 1, 
Im Arcsin+(z)  

> = [ 0 ,  ~ Izl < 1 .  

Hence,  for Im k > O, I k I > 1, 

ff Im ~o +(k) -- sin t Im  Arcsin+(k sin t)dt 

f x/2 
> sin t Arcosh(I k I sin t)dt 

,.I s i n t - l / I k l  

= Im ~o+(Ikl). 

(2) Since l m A r c s i n ÷ ( z ) > 0  for I m z > 0 ,  tp+(k) has strictly posit ive 
imaginary part  when Im k > 0. 

For  k ~ [  - 1, I], ~o+(k) = ~0(k) is zero only at k = 0, and  for k > 1 or 
k < - l ,  

f x12 
Im ~o +(k) = sin t Arcosh( I k I sin t)dt > O. 

• a s i n t - l / I k l  

This  proves (2). 

LEMMA 2.4. 

where 

Let ~ > 1. For n ~ N, n odd 

b,, = Im(~o+(k)-")dk + r.(a) 

I r,(a)] ~ ~ (Im ~+(a))-" 
n 

PROOF. The  Taylor series 
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~o(k) = Y.. a.k" 
n ~ l  
n odd 

for ~0 defines an analytic function in the complex disk I k I < 1, which coincides 
with ~o+(k) for Ikl < 1, Im k > 0. Since ~o(0) = 0 and ~o'(0) = rt/4 ~ 0, there 
exists OoU ]0, 1 ], such that ~o(k) has an analytic inverse in the disk I k I < ~0. Let 
C6 be the circle with radius ~ with usual (counter-clockwise) orientation. For 
0 < ~ < 60, ~o(Cr) is a simple closed curve with winding number + 1. Hence by 
Cauchy's integral formula 

1 f e  ~o-l(S) ds. 
b, = 2n---i tc~) s" + l 

Substituting s = ~(k) we get 

Using 

= ! I "  k b. ~o" ( k )dk . 
2rci d c~ ~o(k) .+l 

- n  d k +  - - d k - - .  d k = O  
" + '  

we get 

b,,= 1 f ~o(k)-"dk, 
2rtin d ~ca 

i.e., nb. is the residue of ~o-" at O. Since b. ER,  

b. - - - 1 2 ~ n I m ( L ~ o ( k ) - " d k )  

2gn 

Using that ~(k) -" is an odd function for n odd, and using that ~(~) -- ~(k), one 
gets that the imaginary parts of the integrals over the four intervals [0, re/2], 
[n/2, n], [g, 3~/2], [3~/2, 2x] are equal. Thus, if C~ denotes the quarter circle 

k -- ~e i°, 0 < 0 ~ hi2, 

then 
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bn =--nn2 Im ( f G~o(k)-" dk) . 

Since ~o(k) coincides with ~o ÷ (k) on C~ and since ~o ÷(k) has no zeros in the set 

{ z ~ C l ~  < Izl < a , O < a r g z < n / 2 }  

(cf. L e m m a  2.3(2)), we get by Cauchy 's  integral formula  that  

(f: L fi b~ = - - 2  Im ¢p÷(k)-~dk + ~o÷(k)-~dk + ~o÷(k) 
rm a 

where the last integral is taken along the imaginary axis. Moreover ,  since ~o ÷ (k) 
is real on  [8, 1] and  purey imaginary on the imaginary axis, 

Im(f6'~÷(k)-"dk)=O 
and  

Hence  

(f; Im ~o +(k) = 0. 
~t 

bn--!fl°Im~k' n d k ~ n  ~!Im/L~n , :~k' ndk) 
By L e m m a  2.3, I ~o ÷ (k) I > Im ~o ÷ (k) > Im ~o ÷ ( I k I ). Thus  

L ~°+(k)-"dk n2 < (Im ~o + (a)) -".  

This  completes  the p roof  of  L e m m a  2.4. 

LEMMA 2.5. Let ~Ol(k) = Re (p+(k), ~o2(k) = I m  ~o+(k), and ~o~ = d~ol/dk, 
~o~ = d~o2/dk for k > 1. Then: 

(1) ~o~(k )~o~(k ) - ~o~(k)~o2(k) = zt/2k, k > 1. 
(2) Let q = ( 4 / r r ) E ( 1 / v ~ ) ( K O / v / 2 )  - E(1/v/2)) ~- 0.86575, then 

7~ 
~al(k)(a;(k) + ~o2(k)fp~(k) > ~-~ q, k > 1 

and equality holds for k = 

PROOF. (1) By L e m m a  2.2, 
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Using 

d E  1 d ( K  - E )  k 
- ( K - E )  a n d  - - - E  

dk  k dk  1 - k 2 

(cf. [1, Formula 710.02 and 710.05]) one gets 

1 

~ o ~ ( k )  = - E '  . 

k 

Thus (1) follows from Legendre's relation E K ' + E ' K - K K ' =  n/2 (cf. [1, 

Formula  110.10]). 

(2) We have 

k(~ol(k )~o~(k ) + ~o2(k)~0~(k)) = ( E ( K  - E )  + E ' ( K '  - E ' ) ) ( 1 / k  ). 

In particular 

K 1 1 r~ 

It remains to be proved that 

( E ( K  - E )  + E ' ( K '  - E ' ) ) ( k )  >= ( E ( K  - E )  + E ' ( K '  - E ' ) ) ( 1 / ~ 2 )  

for 0 < k < 1. Since the function 

f ( m )  = ( E ( K  - E )  - E ' ( K '  - E') ) (v /m) ,  0 < rn < 1 

is symmetr ic  around m = ½, it is sufficient to prove that f i s  convex. Using the 

above-ment ioned formulas for d E / d k  and d ( K  - E ) / d k  one gets 

d m 2  E ( , / - d  - e ) (  v : m  ) = - 

>-_0. 

Since E ' ( v / - m ) ( K  ' -  E')(v/-m) = E(~/1 - m)(K - E)(~/1 - m)  also 
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d 2 
d m  2 E ' ( v / - m ) ( K  ' - >-_ O. 

This proves that f i s  convex. 

LEMMA 2.6. 

PROOF. By Lemma 2.5 

d 
~ [ ~(k)12 = 2(~0,(p~ + ~2(p~)(k) > nq.k 

Fix a > 1, then for 1 < k < o/, 

fm k rcq le(k)12 >_-1~(1)12 + - - d k  
o/ 

-- 1 + r t q ( k -  1). 
O/ 

Thus for n > 3 

Z.  odd I b, I < oo and  ~o- t(s) = Z, odd b,s" for  s E [ - 1, 1 ]. 

O/ 

<= 1 +r tq  (k  - 1) dk  
O~ 

Hence, by Lemma 2.4, 

a 2 

ztq n - 2 

4o /  o/ 
Ib, I _-< + - ( I m  ~o+(a)) -" ,  n > 3 .  

rt2qn(n - 2) n 

If, for instance, we put a = 5v/2, then by [1, p. 324] 

Im ~0+(a) = K'(0x/~.02) - E'(0v/~.02) ,~, 2.32555. 

Isr. J. Math. 

Thus the sequence n2lb .  I is bounded.  In particular Z.o~dl b. I < oo. Therefore 
Z.  odd b~s" converges to a continuous function on [ - 1, 1 ], which is real analytic 

in the interior of  the interval. Since this function coincides with ~ -  ~(s) in some 

neighbourhood of  0 and since ~-re(s) is also real analytic on ] - 1, 1[, we have 
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~ - ' ( s ) =  Y. b~s ~, s ~ [ -  1, 1]. 
n odd 

LEMMA 2.7. Le t  O(k) = arg(~+(k)), k > 1. Then O(k) is a strictly increas- 

ing func t ion  o f  k ,  0(1) = 0 a n d  limk_~ O(k ) = ~/2.  

P R O O F .  Using 

 2(k) 
O(k) = arctan 

~l(k) 

we have by Lemma  2.5 (1) 

dO(k) ~ ( k ) ~ ( k ) -  ~ ( k ) ~ 2 ( k )  n 

d k  I ~ +(k)  12 2k I ~ +(k) 12 
> 0  

for k > 1. Thus O(k) is strictly increasing for k > 1. For  k = 1, O(k) = Arg(l) = 

0. Using that 

E ( O ) = n / 2 ,  E ( 1 ) = I ,  l i m K ( k ) = + o o  
k--I 

we have by Lemma 2.2 

/t  
lim ~,(k) = -  and lim tP2(k ) = ~ .  

Thus O(k) --" n /2  for k ~ ~ .  

LEMMA 2.8. Put  a = 5V/2 a n d  00 = O(¢t). For  foced n ~ N  let p = [nOo/rt] 

( = integer part of  nOo/rO, a n d p u t  

2 fO(k)=(n/n)r 
I r  = - -  I~+(k)l -" Isin n O ( k ) l d k  

7 I n  d O ( k ) = ( n l n X r -  I) 

f o r  r ---- 1 . . . .  , p .  Moreover ,  pu t  

1' = - -  I q~+(k)l -n Isin n O ( k ) l d k .  
nn ~/.)p 

Then: 

(1) (2hzn) f~ I m ( ~ + ( k ) - n ) d k  = - I, + 12 . . . .  + ( - l)Plp + ( - I)P+'I  '. 

(2) For n > 9 one has p > 2 a n d  I~ > 12 > • • • > lp > I ' .  

PROOF. (1) It is clear that 
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2 ~ im(~o+(k)_,)dk = 2 I ¢p+(k)I - " .  sin(nO(k))dk 
nn rtn 

= - Ii + 12 . . . .  + ( - -  1 ) v I  v + ( - -  l ) P + l l  '. 

(2) Let k = X(0), 0 E [0, n/2[ be the inverse function of 0 = O(k). Then by 
the formula for dO(k)/dk derived in the proof of Lemma 2.7 we have 

and 

4 f(n/n)r 
L = - -  z(O)l~O+(x(O)) I s-" I sin nO ldO 

n2n ., (x ln) (r -  1) 

4f, 
I '  = Z(0) I ¢0+(z(0))12-" I sin nO IdO. 

712n nln)p 

We prove next that k I tp+(k)12-" is a strictly decreasing function on [I, a] for 
n > 9 :  

d (k I ~°+(k)12-") = d k  I ~°+(k)12-" + k I ~0+(k) I-" ~-~ I ~o+(k) 

-- I ~o+(k)I-"(I ~o+(k)12 - (n - 2)k(~ol(k)~o~(k) + ¢o2(k)~0~(k)) 

< l~o+(k)l-"(l~o+(k)12-(n - 2) 2 q ) 

< itp+(k)l_, ([tp+(a)t 2 7nq~ 
= - --~-/ .  

Here we have used Lemma 2.5(2), and that I ~0+(k)12 is an increasing function 
of k (which also follows from Lemma 2.5(2)). From [1, p. 324], 

~0,(a) = ~o,(5v~) = E(0v/O.~.02) ~ 1.56291, 

= = e,(ov/6 .o2) 2 . 3 2 5 5 5 .  

Hence I~o +(a) l ~ ~ 7.8509 while 7nq/2 ~ 9.5194. Thus k I~0 ÷ (k)15-" is a strictly 
decreasing function of k for 1 =< k < a and n > 9. 

Using I sin nO I is periodic with period n/n,  it now follows that 

11>12> "'" >Ip.  

Moreover, 
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Finally, 

i , = 4 f  O° 
n2 n j .p~. Z(0) I ~0 +(Z(0))12-" I sin nO I dO 

4 f Oo-.., _-__ Z(0) I ~0 +(Z(0))12-" I sin nO IdO 
It2gl d (n/nXp - 1) 

<Ip .  

0o = arctan ~o2(a) > arctan(1) = zt/4. 
~01(a) 

Thus 

This completes the proof  of  Lemma  2.8. 

LEMMA 2.9. 

f o r n  > 9 .  

Let n => 9, let L be as in Lemma 2.8, and let 

c = I go+(v~)le -q°<~)-~ 1.05838. 

T h e n  

(1) Ii > (0.27/n2)c -", 
(2) 12 < 0.35.1v 

PROOF. Since Z(0) >= 1 for 0 =< 0 < n/2, we have 

4 fo  ~/n 11 >------ I~O+(Z(0))I 2-" Isin nOdO. 
7~2n 

For 0 = O(k) (equivalently k = Z(0)) we have 

d--0 log l ~0 + (Z(0))l = ~-~ log l ~o + (k) 12. 

e~(k)e~(k) + e2(k)e~(k) 2 
k I ~o+(k)12 

I~+(k)l  2 n 

__>q 

where q ~ 0.86575 is the constant defined in L e m m a  2.5. Hence for 0 _-< 0 < 
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Equivalently 

where 

F r o m  [1, p. 324], 

Thus  

and  

U. HAAGERUP 

logl ¢+(X(0)) I < logl ~ +(v/2) I - (0(v/2) - O)q. 

I ~o+(X(0))I =<ce q°, 0 ___ 0 < 0 ( v / 2 ) =  

c = I ~o + (v/2) I e -  qeCv~). 

~o~(v~) = E(1 /v /2)  ~ 1.35064, 

~o2(v/2) = K( I /v /2 )  - E ( I / v / 2 )  ~ 0.50343. 

I~o÷(~)l-~ 1.44142, 

0(x/~) = arctan(~o2(v/2)/~Ol(X/r2)) ~ 0.35678 

c ~ 1.05838. 

Since O(v/2) > ~lt ( ~ 0.34907), we have for n >_- 9 

4 f ~ / .  
Ii > ~ ( c e q ° )  2 - n  sin nO dO 

7t2n J o 

= 4c2-n ~-x e -cn-2~°~n sin 0d0 
7t2n 2 JO 

> 4C2-" ~'x e -q° sin 0 dO 
~--- 7t2n 2 J0  

= (2C/2 1 + e - q X c _  n 

Since 

we have proved (1). 

(~) 2 1 + e - q x  
- -  ~, 0.27659 

1 + q 2  

Isr. J. Math .  
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Using 

we have 

Hence 

cp,(5/v/3) = E ( ~ )  .~. 1.52256, 

~o=(5/v'~) = X'(v/0-:. 12) - E ' ( ~ .  12) ~ 1.37189, 

0(5/v~) ~ 0.73339. 

27~ 
0(5/v/3) > -~- ( ~ 0.69813). 

Thus for 0 _-< 0 _-< 2n/9, Z(0) < 5/v/3. Hence for n >_- 9 

4 5 f2 , , / ,  I2 < - - - ~  d./. I~o+(Z(0))l 2-" sinnOldO 
7~2n 

4 5 ~/"] ( ( ~ n ) )  2-. 
-- / t2nx,~,)o 1~ 0+ Z O+ sinnOdO. 

Since 

it follows that 

Thus 

B u t  

This proves (2). 

d 
~-~logl~a+(Z(0))l > q, 

I~o +(x(O + n/n))12-" < e -(" - z)"q/" I ~o + ( Z ( 0 ) ) [  2 - " .  

4 5 fO nln 12 < e-t.- 2)Ttqln n2 n v/~ I¢ +(Z(O))I 2-" sin nO dO 

< 5 e_7nq/9 II 

~ 3  e -  7n¢/9 ~ 0.34809. 
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END OF PROOF OF THEOREM 2.1. Let n >_- 9 and let 11, 12, • • . ,  Ip, I '  be as in 

Lemma  2.8. By Lemma 2.4 with a = 5v/2 and Lemma 2.8, we get 

- b, = (I1 - I2 + . . .  + ( - l ) P - ' I p  + ( - 1)PI  ')  - r,(5v/2). 

Since the terms in the alternating series have decreasing size by Lemma 2.8(2), 

and since p ->_ 2, one has 

- b .  > I l  - I2 - r .  ( 5 v / 2 ) .  

Lemma 2.9 gives 

0 1 (I1 - I:) > 0.27(1 - .35) n-S (1.06)-" 

0.175 
~ (1.06)-".  

n 2  

Since Im ~o+(5v'~) ~ 2.32555, we get by Lemma 2.4 

I r , (5v '~)l  = - -  < 5' j '2 (2.32)-".  
n 

Thus 

5,/5 O. 1 75 
- b , >  ( 1 . 0 6 ) - " - - "  (2.32)-" 

n 2 n 

0 . 1 7 5 1 . 0 6 ) - , ( 1  5v/2 n (1"06~"~ 
n 2 0.175 \ Z ~ /  / 

0.175 
> 

n: 
(1.06)-"(1 - 4 1 . n . 2 - " ) .  

Since n .  2 -"  is a decreasing function of  n ~ N, and since 4 1 . 9 . 2  - 9 < 1, we 

conclude that b, < 0 for all odd n > 9. This completes the proof  of  Theorem 

2.1. 

REMARK. In the beginning o f  this section we found bl, b3, b5 and b7 by 
solving the equation ~o(k)= s in terms of  power series. Continuing this 

procedure,  one gets 

(4),3 
b9 - -  - 5 " 2  - 1 4  bll = - -  1 5  " 2  - 1 7  , b13 = - 4 9 " 2  - 2 0  • 
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We doubt  that it is possible to write the b , ' s  in a closed form. However ,  using 

the following asymptot ic  expressions for ~ ( k )  and ~o2(k) for k ~ 1 (k >_ 1): 

~,(k) = I - ½ ( k -  1 ) l o g ( k -  1 ) +  O ( k -  1), 

~02(k) = 2 ( k  - 1) + O(1), 

it is not hard to prove that I2/I~ ~ 0  and that I~ ,-, 4/(n 2 log 2 n) for n ----0% so 

that 

4 
b, ,-, for n --- oo (n odd). 

n 2 log2 n 

§3. The main result 

THEOREM 2.1. Let K c denote the complex Grothendieck constant and let 
be as in Section 2. Then 

8 4 <  
n(ko + 1) '  

where ko is the unique solution to the equation ~o(k ) = ~rc(k + 1) in the interval 
[0, 1]. One has 8/rr(k0 + I) ~ 1.40491. 

LEMMA 3.2. Let d E N  and let Z~ . . . .  , Zd be independent complex random 

variables, equally distributed with density 

le-1~12dxdy 
7[ 

(x = Re z, y = Im z). 

For each u -- (ut, • • . ,  Ud) ~Cd, let 

d 

Z.  = Y. ukZ~ 

and let (u,  v) -- Eka=~ UkV k be the usual inner product in C d. I f  u, v E C  d and 

U u 112= II v 112= 1, then 

o nt2 cos 2 l 
E(sign Z,  sign Z v ) = ( u , v )  ~ / 1 -  I(u,v)]2sin2t dt. 

PROOF. The sign of  a complex number  z is 
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= ~ z / l z l ,  z SO, 
s ignz  1 

t0 ,  z = 0. 

It is elementary to check that for any z ~ C, 

1 f 2 .  
(*) sign z = 4 .J o sign(Re(e-i°z))ei°dO" 

Put  X2k-~ = V/2 Re(Zk) and X2k = M//'2 Im(Zk), k = 1 , . . . ,  d. Then (Xi)Ee_ 1 is a 

set of  independent  real valued random variables each normally distr ibuted 

with E(Xi) = 0 and E(X  2) = 1. For  a E R  2d, put  

2d 

X a =  2 a iXi .  
i - I  

For a,  b ~ R  2a, II a 112 = II b 112 = 1, (Xa, XD form a joint  normal dist r ibut ion,  
E(X,,) = E(XD = O, E(X2a) = E(X~) = 1 and E(X,,Xb) = (a, b). Thus by [7, 

p roof  of  lemma 1 ]. 

2 
E(sign X~ sign Xb) = - Arcsin(a ,  b) .  

7C 

For  u, v E C  d, 

1 1 
Re Zu = v/~ Xa, Re Z, = ~ Xb 

where a2k_ l = R e  Uk, a2k = - -  I m  Uk, b2k_ l -~ Re Vk, and a2k = - -  I m  IJk, k = 

l . . . .  , d. Hence 

2 
E(sign(Re Zu)sign(Re Z,)) = - Arcsin(a ,  b ) 

/t 

2 
= - Arcsin Re (u ,  v), 

7[ 

so by formula ( ,)  

I f2~ f 2~ _2 Arcsin Re(e-i°u, e-i~'v )eiC°-~')dOdtp. E(signZusignZv)=16Jo Jo ~t 

Assume now that (u,  v ) ~ R. Then the integral is equal to 
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1 f 2 n  2a 
-~ do fo  arcsin(c°s(O - ~°)(u' v))e~(O-~)dOdo 

1 f o  2~ = 4 Arcsin(cos t (u, v))eitdt. 

Since Arcsin(cos t (u, v )) is an even function of  period 2n, the imaginary part 
of the integral vanishes. Thus 

I ~0 ~" E(sign Z. sign Z~) = 4 .  Arcsin(cos t (u, v ))cos t dt. 

The integral is the sum of four integrals, namely the integrals over [0, n/2], 
[n/2, n], [n, 3zt/2] and [37t/2, 2n], and these integrals are equal. By substitut- 
ing t with n/2 - t in the integral from 0 to n/2 we thus have 

f nl2 
E(sign Z,, sign Zv) = Arcsin(( u, v ) sin t)sin t dt. 

,dO 

Finally, using 

d 
Arcsin(x) = (1 - x 2) -1/2, 

dx 

one gets by partial integration 

f x/2 COS 2 t 
E(sign Z, sign Zv) = (u, v) 

Jo  x / 1 - - ( u , v ) 2 s i n  2t 
dr. 

f O hI2 COS 2 t dt 
= e l ( u ,  v)[ x / l -  I(u,v)lEsin2t 

f o  n/2 COS 2 1 dl. 
= (u, v) ~/1 - I(u, v)I ~ sin 2 t 

This completes the proof  of Lemma 3.2. 

The following definition can essentially be found in Krivine's paper [7, pp. 
23-24], but we will phrase it differently, so that we can take Lindenstrauss' and 

If  (u, v ) $ R, we can choose c E C, I c I = 1, such that c ( u, v ) --- I (u, v ) I. Since 
(cu, v ) ~ R  and since sign Z., = c .  sign Z~, we have 

E(sign Z,, sign Z~) = cE(sign Z~ sign Zv) 
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Pelczynski's matrix formulation of  Grothendieck's inequality [8] as starting 

point. 

On the set of  complex n × n matrices Mn(C) we consider two norms II II 
and II II, defined by: 

I la  I1~ =< l~AEconv( (s i~) i , j_ l , . . . , ,  ] l s i l  ---< 1, Itil _-< 1} 

A is in the closed convex hull of  the 

matrices of  the form (xi, y~ ), where 
IIA I1 ,=  < 1~,  

x~ . . . .  , x,,  y~ . . . .  , y, are vectors in the 

unit ball of some complex Hilbert space. 

It is clear that II a II, --< II A II ~. A straightforward dualization of  [8, Theorem 
2.1 ] gives 

LEMMA 3.3. For every n ~ N  and  every A ~M,(C) ,  

Ilh II, < K a  c IIA U,. 

Moreover, Ka c is the smallest constant for which this inequality holds for all 

n E N  a n d a l l A  ~M~(C) .  

LEMMA 3.4. (1) L e t A  ~ M , ( C ) .  Then II h II, --< 1 i f a n d o n l y  i f  there exist 

unit vectors xl . . . . .  x , ,  yl, . . . , y~ in a Hilbert space o,~f , such that 

A~j = (x~, yj) ,  i , j  = 1 , . . . ,  n. 

(2) Let  A o B denote the Schur product o f  A ,  B EM~(C): 

(A o B)i) = AjjB~j, i , j  = 1 . . . .  , n. 

Then II a o B tl, -<- II h II, II n I1,. 

x n where PRooF. Let ~ be the set of  n × n matrices of  the form ( i, yj),-j ~ l, 

x~, yj are unit vectors in some Hilbert space ~e. Since the unit ball of a Hilbert 

space is the convex hull of  the unit sphere, we have 

IIA II, =< 1 ~ A  ~conv(~n) .  

In the definition of  ~ we can put ~ = C 2n, because x ~ , . . . ,  x~, Yl . . . .  , Y~ 

span a subspace of  JcJf of  dimension at most 2n. This shows that ~ is a 

compact subset of  M,(C), and therefore 

cony( ~ .  ) = cony( ~ ~). 
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Next, let A, B ~ 9 .  and ;t E [0, 1]. Choose Hilbert  spaces ~ ,  Jg  and unit 

vectors x~, yj E a ~ ,  z~, wj E :g(', such that 

Then 

A 0 = (x~, y j ) ,  Bij = (z, ,  wj).  

(1 -- 2 )A 0 + 2Bij = ((1 - -  ~ ) l/2x i • 21/2zi, ( l  - -  ~ ) l/2yj (3) ~ ll2wj ) 

where the last inner product  is taken in aq ~ @ :~1 r. Thus (1 - 2 ) A  -4-2//E 9 , .  

Hence c o n v ( ~ , ) =  9 , .  This proves (1). To prove (2) it is sufficient to show 

that I[ A o B [[, _-< l whenever  ][ A [], _-< 1 and I] B [], < 1. By (1) we have 

A,j = (x , ,  y j ) ,  B~ = (z , ,  w j )  

where xi, yj ~ Un i t sphe re (~ ) ,  z,, wj ~ Unitsphere(al  r) for a pair  of  Hilbert 

space ~ and 3~C. Hence 

el,ri  o = (xi  ® zi, yj ® wj) 

and I[ xi ® zi [[ = I[ Yj ® wj [[ = 1 where norms and scalar products  are com- 
puted in the Hilbert tensorproduct  ~¢' ® 3t r. Hence [[ A o B [[, =< 1. 

LEMMA 3.5. (1) The function 

f o  ~/2 cos 2 t 
• (k) = k ~/1 - I k 12 sin 2 t 

dt 

is a homeomorphism o f  the closed unit disc 1) = ( z  E C  I I z I <= 1 ) onto itself. 

(2) Let A EM,(C) .  Then 

II A II, --< 1 ~ II ~ ( 4 )  II ~ --< 1 

where ~ (A  ) is the matr ix  with elements ~ (A  ) o = ~(A~j). 

PaooF.  Let ~ be as in Section 2. Then 

I~(k) l  = qKIkl), 

arg ~ ( k )  = arg k, k ~ 0 

so (1) follows from the fact that ~ is a homeomorph i sm of  [0, 1 ] onto itself and 

q~(0) = 0. I fA ~ M , ( C )  and II A II, --< 1, there exist by Lemma  3.4 (2) a Hilbert 
space ~ and unit vectors u~ . . . .  , u,,  vt, . . . , v, ~ . ,~ ,  such that 

A,j = (u~, 5 ) -  
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Since span{u l , . . . ,  u~, vt . . . .  , v, } is finite dimensional, we can assume that 
. ~  = C d for some d E N .  Let Z~ . . . . .  Zd be complex random variables on a 
probability space (f~, dto) satisfying the conditions of Lemma 3.1, and put 

d 

z~ = ~] u~Zk, u E C ~. 

By Lemma 3.1, 

~((ui,  vj)) = f n  sign Zu,(t.o)sign Zvj(w) din. 

Hence, by the definition of II II., we have 

n < | .  II ~(<u,, vj)),,j_l I1® = 

PROOF OF THEOREM 3.1. Let ~ -  1:/5 __,/) be the inverse function of • (cf. 
Lemma 3.5). Since O(k) = sign(k)~0(I k I), we have 

• -l(s) = sign(s)~o-~(Is I). 

Thus, by Theorem 2.1, 

• -l(s) = sign(s) ~ b, Is I" 
n - - I  
n odd 

where b~ = 4/rt and Z,oddl b, I < oo. Since 

n odd 

is a strictly increasing continuous function on [0, 1] and since ~,noddib n [ 

4 / x  > 1, there is a unique floE]0, 1[ for which 

Ib, lP¢= 1. 
n odd 

Next, we show that K~ < 1/,80: LetA ~M~(C), and assume that II A II, --< 1. 
For s E/3, 

dO-l(/3oS) = ~ b2k + lfl2o k + l sign(s)ls 12k+l 
k - 0  

/.~ / '~2k l t ,  k + l ~ k  + 
---~ t . '2k + I/~O o ,J . 

k - O  
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Since (M,,(C),  0) is a Banach algebra with norm II II, and since clearly 

II C" II, = II c II, for all CEM~(C), we have 

II ¢-2(floA)II, =< ~ Ib2k+l I/7o 2k+'= l, 
k - 0  

where ~-~(floA) denotes the matrix with elements ~ -  ~(floA,-j), i , j  = 1 . . . .  , n .  

Hence by Lemma 3.5 

II/7o~ II~ = II ¢)o ¢)-'(poa)I1~ =< 1. 

Thus we have proved that for any n × n matrix 

II A I I ,  --< 1 ~ II A II ~ --< 1//7o, 

so, by Lemma 3.3, ~ < 11/7o. To compute 17 o, we use that b~ = 4/re and b, _-< 0 
for n > 3 (cf. Theorem 2.1). This gives 

Y~ I b, I/7~ = 8/7o - ¢ -  1(#o). 
n odd 

Hence/70 is a solution to the equation 

~- '~o)  = 8/70 - 1. 
7~ 

Now, put ko = q)-'(flo). Then ko~[0, 1] and 

~,(ko) =/70 = ~ (ko + 1). 

From the Taylor expansion of ~)(k) it follows that ~'(k) >= ~/4 for 0 _-__ k < I, so 
that 

~ ( k ) -  ~n(k  + l )  

is an increasing function on [0, 1 ]. Therefore/Co is the unique solution to the 
equation 

~(k) = ~ (k + 1) 

in the interval [0, 1 ]. Recall from Section 2 that 
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1 
~a(k) = k ( E ( k )  - (1 - k2)K(k)) ,  0 < k < 1. 

By s e c o n d - o r d e r  i n t e r p o l a t i o n  in  the  t ab le s  [1, p. 324] one  f inds  

k 2 E(k) K(k) q~(k) ~o(k) - ~n(k + 1) 

0.6601 1.264955 2.020408 0.711684 - 0.000070 
0.6602 1.264898 2.020537 0.711754 - 0.000023 
0.6603 1.264841 2.020666 0.711825 + 0.000023 
0.6604 1.264784 2.020795 0.711895 + 0.000069 

(slight adjustments in the last decimal place have been carried out by use of 

more accurate tables [ 10]). Hence 

which gives 

/Co ,~ (0.66025) 1/2 ~ 0.81256 

1 8 4 <  
m 

Po n(ko + 1) 
~, 1.40491. 
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